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Abstract

Recent work has validated the use of transfer entropy for exploring coupling in structural dynamics. Transfer entropy is

a measure of information flow between Markov processes. Using transitional probabilities, one can get a quantification of

the degree of influence one process has on the dynamics of another. Previous research included a time lag to assess

information exchanges at various time scales without resulting in tremendously burdensome computations. However, it is

more informative to view the transfer entropy using two separate time lags to assess transitional probabilities between both

processes. This work introduces a second time delay into a linearized version of the transfer entropy to produce a transfer

entropy surface. This surface allows for a fuller assessment of dynamical coupling between measurements. Analytical and

low-order-correlation-based measures of the transfer entropy were formed and compared to common modal analysis

methods to assess their ability to detect linear dynamical changes in structures. Investigations were conducted on a

computational linear oscillator and a simple experimental system. The transfer entropy is a much better indicator of

dynamical changes than the modal techniques. For the structural systems studied, the plane of greatest sensitivity in the

time-delayed transfer entropy surface is along the diagonal and not along one coordinate as was utilized in previous work.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There are a great number of system identification procedures that rely on examining linear dynamical
relationships between data. The underlying assumption in these procedures is that a system may be
decomposed into its eigenstructure, resulting in orthogonal normal modes vibrating at their corresponding
eigenfreqencies. The procedure commonly involves recording system inputs and outputs, and then fitting the
data to a linear model in the time or frequency domains. Common methods involve curve fitting frequency
response functions, including the use of operating shapes (‘‘peak picking’’), rational polynomial curve fitting
[1], and nonlinear least-squares fitting [2]. Additionally, there are several time domain approaches such as the
eigensystem realization algorithm [3] and the complex exponential algorithm [4] among others [5,6]. Higher-
order frequency response functions have been employed with some success to account for weak nonlinearities
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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in systems [7,8]. This approach allows for nonlinear behavior but still requires model-based assumptions about
the correlations within the system.

Recently, a generalized information-based approach was proposed utilizing the transfer entropy [9–11]. This
approach examines structural dynamics from the perspective of information transfer between locations on a
structure. Information theory was originally derived for the purposes of finding fundamental limits on
compressing and reliably communicating data. Measures of information typically express uncertainties in
random variables or in the relationship between random variables, and include the information entropy,
mutual information, Kullback–Leibler divergence, and transfer entropy [12]. Transfer entropy specifically
utilizes conditional relationships between two processes to determine degree and direction of information flow.
For example, given two observations x(n) and y(n), the transfer entropy Ty-x measures the influence y(n) has
on the transition from x(n) to x(n+1). Previous works introduced a time delay t into the algorithm to examine
the influence of y on x at multiple time scales such that y(n) becomes y(n�t). While valid, this technique
ignores the transitions from x(n) to x(n+1) at other time scales t for the variable x, x(n�t). This will be
discussed at greater length in the following section, but the missing time scale influence is clear. Therefore, it
would be more advisable to introduce time delays for both x and y. A transfer entropy surface can be thus
created that explores the relationship between transitions at all these various time scales.

This paper introduces this variation to transfer entropy and examines how changes to system dynamics
affect the transfer entropy at various time scales. Estimation of transfer entropy can be quite difficult,
requiring a large number of points to reduce variance in results; however, for linear systems subject to
Gaussian excitation, an analytical formula can be derived. The formula incorporates the use of a combination
of time-delayed auto- and cross-correlations. Consequently, a data-based ‘‘linear’’ estimation [10] can be made
through the estimation of these correlations. This linearized estimate of the transfer entropy can be employed
similar to the previously mentioned modal analysis techniques for systems where linear assumptions hold true.

In this work, the linear modified transfer entropy for a simulated multi-degree-of-freedom oscillator is
computed and validated through comparisons to theoretical results. In addition, techniques are evaluated for
utilizing this modified transfer entropy as a low-dimensional indicator of a change to a dynamic system. It will
be shown that certain time scales in the transfer entropy surface are more sensitive to damage than those time
scales examined in previous works. The sensitivity of the linearized estimate of the transfer entropy is then
compared to other time domain techniques as well as common frequency-based modal techniques for both the
computational and experimental dynamic systems.
2. Time-delayed transfer entropy surface

Transfer entropy, originally formulated to examine information transport [9], explicitly accounts for the
underlying dynamics between processes, unlike other information-based measures such as mutual information
[13]. As stated previously, the formulation of transfer entropy involves the assessment of various conditional
probabilities. If the dynamics of a process x at x(n+1) is conditional only on previous values of x up to a time
lag k, the process is called a kth-order Markov process. This transition probability can be written as
p(x(n+1)|x(n),x(n�1),y,x(n�k+1)) ¼ p(x(n+1)|x(n)(k)) ¼ p(x(1)|x(k)) (where n is dropped for notational
convenience). If a second process y(m)(l) is influencing these transition probabilities, the influence of both
x(n)(k) and y(n)(l) on x(n+1) can be expressed as p(x(1)|x(k),y(l)). Based on the definition of dynamical
interdependence, the transfer entropy [9] can be formulated as

Ty!xðxð1Þjx
ðkÞ; yðlÞÞ ¼

Z Z Z
pðxð1ÞjxðkÞ; yðlÞÞ log2

pðxð1ÞjxðkÞ; yðlÞÞ

pðxð1ÞjxðkÞÞ

� �
dxð1ÞdxðkÞ dyðlÞ. (1)

Hence, transfer entropy provides a quantification of the additional knowledge provided by the observation y

that is necessary to describe the future dynamics of x, given that the past history of x is already known. To
compute this equation from data, one would be required to estimate very high-dimensional probability
densities. Previous works that have employed transfer entropy in a structural dynamics application [10,11]
have reduced the order of the processes to k ¼ l ¼ 1 for computational simplicity, and a time delay is added
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to y(n) such that the transfer entropy equation becomes

Ty!xðxð1Þjx; yðtÞÞ ¼
Z Z Z

pðxð1Þjx; yðtÞÞ log2
pðxð1Þjx; yðtÞÞ

pðxð1ÞjxÞ

� �
dxð1ÞdxdyðtÞ, (2)

where y(t)�y(n+t). Assuming the process truly is of order k ¼ l ¼ 1, this equation quantifies the information
gain from y(t) only. However, most structural systems do not easily fit into such a low-order process.
Therefore, information about the dynamics of x may be present within its own past history, such that when
y ¼ x, Eq. (2) will not be zero. This equation can still provide useful information in regard to process
couplings [10,11], but does not strictly adhere to a definition of transfer entropy that calls it a measure of the

information gain from y on the dynamics of x given that the past history of x has already been accounted for. In
systems that can be represented by a set of ordinary differential equations or a mapping, x and y can be
represented by vectors, in which case the transfer entropy can account for the full dynamics with a low
Markov order. However, the vector representation would still require the estimation of high-dimensional
probability densities.

In order to include the full past history of x and y without requiring extremely high-dimensional probability
density functions (pdfs), one can incorporate time lags into both x(n) and y(n) such that

Ty!xðxjxðt1Þ; yðt2ÞÞ ¼
Z Z Z

pðxjxðt1Þ; yðt2ÞÞlog2
pðxjxðt1Þ; yðt2ÞÞ

pðxjxðt1ÞÞ

� �
dxdxðt1Þdyðt2Þ, (3)

where x�x(n), x(t1)�x(n+t1), and y(t2)�y(n+t2). Note that x(1) in Eq. (2) was replaced with x in Eq. (3)
because all delay combinations between the three variables are possible using the two lags t1 and t2. When
t1 ¼ �1 and t2 ¼ t, Eq. (3) is equivalent to Eq. (2). Examining the surface created by a range of t1 and t2
values, one can obtain an assessment of the information transfer from y to the current dynamics of x at
multiple simultaneous time scales of x and y. For any set of values t1 and t2, the transfer entropy measure in
Eq. (3) will still have a bias caused by not taking into account the entire past history of x all at once. However,
by viewing all values of t1 and t2 in this transfer entropy surface, one can intuitively see where the perceived
additional influence of y at t2 could be attributed to the past history of x if a higher-order Markov process was
considered. This can be better understood by examining an analytical solution to the transfer entropy surface,
as will be derived below for linear Gaussian dynamical systems.

Expanding the conditional probabilities in Eq. (3), the transfer entropy can be rewritten in entropy form as

Ty!xðxjxðt1Þ; yðt2ÞÞ ¼
Z Z Z

p x; xðt1Þ; yðt2Þð Þ � log2ðpðx; xðt1Þ; yðt2ÞÞÞdxdxðt1Þdyðt2Þ

þ

Z
pðxÞ � log2ðpðxÞÞdx�

Z Z
pðx; yðt2ÞÞ � log2ðpðx; yðt2ÞÞÞdxdyðt2Þ

�

Z Z
pðx; xðt1ÞÞ � log2ðpðx;xðt1ÞÞÞdxdxðt1Þ. (4)

Assuming stationarity and ergodicity, the probabilities can be estimated from a single x and y time series.
However, for linear Gaussian dynamical systems, analytical and linearized (defined here as estimations made
when assuming no higher than second-order correlations in the data) formulations of the measure can be
established to avoid estimation of multidimensional pdfs. For Gaussian processes, the transfer entropy can be
written as the product of determinants of covariance matrices [14]. For the general, possibly multivariate case,
the expression becomes

Ty!xðxjxðt1Þ; yðt2ÞÞ ¼
1

2
log2

jCx;xðt1Þ;yðt2ÞjjCxj

jCx;yðt2ÞjjCx;xðt1Þj

� �
, (5)

where Cx, Cx�xðt1Þ, Cx�yðt2Þ, and Cx�xðt1Þ�yðt2Þ represent the covariance matrices associated with x, x� xðt1Þ,
x� yðt2Þ, and x� xðt1Þ � yðt2Þ, respectively. The operator j � j takes the determinant. The transfer entropy
assuming a Gaussian-excited linear system can therefore be computed by taking the various expected values in
Eq. (5). If x and y are stationary, ergodic, zero-mean processes, the time-shifted cross-correlation between
them can be written as Rxy(t2�t1)�E[x(n+t1),y(n+t2)]. For convenience, the autocorrelations can be
normalized to rxx(t1)�Rxx(t1)/Rxx(0) and ryy(t1)�Ryy(t1)/Ryy(0), and the linear cross-correlation coefficient
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can be expressed as rxyðt2 � t1Þ � Rxyðt2 � t1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rxxð0ÞRyyð0Þ

p
. It can also be noted that rxy(t2�t1) ¼

ryx(t1�t2). Using this notation, Eq. (5) can be written as

Ty!xðxjxðt1Þ; yðt2ÞÞ ¼
1

2
log2

ðr2xxðt1Þ � 1Þðr2xyðt2 � t1Þ � 1Þ

1þ 2rxxðt1Þrxyðt2Þrxyðt2 � t1Þ � r2xyðt2Þ � r2xxðt1Þ � r2xyðt2 � t1Þ

" #
. (6)

This equation forms the transfer entropy surface for a structure given that it is linear and Gaussian-excited.
Eq. (6) incorporates both auto- and cross-correlations at various delays depending on the values of t1 and t2.
If t1 ¼ �1, the equation becomes what has been used previously in the literature [10,11]. Ideally, the
information gain through knowledge of y when the history of x is already known should be zero when x ¼ y

and t2X0. However, this will not be the case in the above expression for x ¼ y and t1at2, illustrating the bias
attributed to low-order Markov assumptions. Therefore, assuming simultaneous measurements, only
t1 ¼ t2 ¼ t will not possess this bias. However, it may be useful in a dynamical examination to look at all
variations of t1 and t2. If t1 ¼ t2 ¼ t, the equation reduces to a combination of auto and cross-correlations at
t and cross-correlations at zero. If t1 ¼ t2 ¼ 0, the transfer entropy becomes negative infinity, as no transition
has taken place in this scenario.

The complete analytical solution for this type of system requires a solution to the auto- and cross-
correlations in the above expression. The dynamics of an L-degree-of-freedom linear, dissipative, Gaussian-
excited structure are typically written in the form:

M €xþ C _xþ Kx ¼ fðtÞ, (7)

where M, C, and K represent the L by L constant coefficient mass, damping, and stiffness matrices,
respectively, and f(t) is the Gaussian input. From [11], the linear cross-correlation between any two state
variables in the above system is given by

RxyðtÞ ¼
1

4

XL

l¼1

XL

m¼1

ulðLÞumðLÞulðxÞumðyÞ½Alm e�Bmomt cosðodmtÞ þ Blm e�Bmomt sinðodmtÞ�, (8)

where ui are the mode shapes and oi the undamped natural frequencies. Additionally, Bi are the dimensionless
damping ratios defining the fraction of critical (required for oscillatory behavior) in the ith mode, and odi are
the corresponding damped natural frequencies such that odi ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2i

p
. Finally, the parameters Alm and

Blm can be evaluated by

Alm ¼
8ðolBl þ omBmÞ

o4
l þ o4

m þ 4o3
l omBlBm þ 2o2

l o
2
mð�1þ 2B2l þ 2B2mÞ

,

Blm ¼
4½o2

l þ 2olomBlBm þ o2
mð�1þ 2B2mÞ�

odm½o4
l þ o4

m þ 4o3
l omBlBm þ 2o2

l o
2
mð�1þ 2B2l þ 2B2mÞ�

. (9)

The purely analytical transfer entropy is useful for comparison to linearized (estimated from auto- and cross-
correlations) and generalized estimates that do not assume the system is linear (by estimating the entropies in
Eq. (4)). However for the scope of this work, results are limited to the analytical and linear estimate versions.
Fig. 1. Five-degrees-of-freedom linear spring mass model.
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Fig. 2. Analytical transfer entropy surfaces for (a) Tx3!x2
ðt1; t2Þ and (b) Tx4!x3

ðt1; t2Þ.
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3. Simulated model

A simulated oscillator that can be described by Eq. (7) was constructed (Fig. 1) with baseline parameters set
to mi ¼ 0.002 kg, ci ¼ 0.1N s/m, and ki ¼ 30N/m. A random white Gaussian excitation was applied at the free
end. The system was numerically integrated and discretely sampled at 1000Hz.

Analytical transfer entropy surfaces are shown in Fig. 2 for a few different adjacent response comparisons in
the baseline condition, spanning delay ranges of �150pt1p150 and �150pt2p150. When t1 is such that
x(n�t1) is highly correlated with x(n) (t1E7100, corresponding to fs/2o1, where fs is the sampling rate and o1

is the first natural frequency), the transition from x(n�t1) to x(n) is fairly certain (higher conditional
probability). Therefore, regardless of t2, the transfer entropy surface tends to approach a local minimum when
these delays are reached in t1. Similarly, y(n�t2) provides additional knowledge about the transition from
x(n�t1) to x(n) when x(n�t1) is uncorrelated with x(n), but y(n�t2) is strongly correlated with x(n). For a
linear system, this relationship will typically transpire near where t2�t1 is at a maximum or minimum in the
cross-correlation function between x and y. Therefore, in the transfer entropy surface, there are diagonals of
local minima where t2�t1E7100. Obviously, the local maxima in the transfer entropy appear between these
local minima. Note that for many systems, including the system examined here, the autocorrelations of x and y

are very similar to the cross-correlation between x and y when x and y are measured from adjacent locations.
Therefore, the transfer entropies that exhibit minima and maxima along these t2�t1 diagonals do not truly
express information gain from y given full knowledge of x because of the first-order assumption in the Markov
model described previously. For higher-order Markov processes, the information transfer between y and x

would actually be lower at these local maxima. This is the case because much of the information y(n�t2) adds
to the transition from x(n�t1) to x(n) is actually contained at another lag t10 that would have been accounted
for at some higher order of the Markov expression for x. For an ideally ordered calculation, transfer entropy
between a measurement and itself should be zero for any delay. Therefore, transfer entropies along the surface
for this first-order approximation are skewed by what could be called a ‘‘false auto-transfer entropy,’’
Tx-x(t1,t2). This is the transfer entropy bias described earlier. In addition, the flow of information can be
further complicated by the difficulty in interpreting time scales of information transfer in the presence of bi-
directional coupling.

Assuming simultaneous measurements, the only points along this surface that will not have a transfer
entropy value between a measurement and itself are along the t1 ¼ t2 ¼ t diagonal. Consequently, these
values tend to be lower than other points along the transfer entropy surface, but do not have a large skew
caused by false auto-transfer entropy. The largest transfer entropies are at t2 lags near zero because the
majority of the information transfer between one response and a nearby measurement will occur at the lower
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Fig. 3. Theoretical and estimated transfer entropy surfaces for (a) theoretical; Tx3!x2
ðt1; t2Þ and (b) estimated; Tx3!x2

ðt1; t2Þ.

Fig. 4. Analytical and estimated transfer entropy planes ( estimated; theory), Ty!xðt1 ¼ �1; t2Þ for (a)

Tx1!x2
ðt1 ¼ �1; t2Þ, (b) Tx2!x3

ðt1 ¼ �1; t2Þ, (c) Tx3!x4
ðt1 ¼ �1; t2Þ, (d) Tx2!x1

ðt1 ¼ �1; t2Þ, (e) Tx3!x2
ðt1 ¼ �1; t2Þ, and (f)

Tx4!x3
ðt1 ¼ �1; t2Þ.
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time scales before the first local minimums. When t1 ¼ 0, no transition has taken place and the transfer
entropy is undefined.

Results from the estimated transfer entropy surfaces (calculated through an estimation of auto- and cross-
correlations in the time series) can be compared to the purely theoretical transfer entropies in Fig. 3. As would
be expected, there are very few distinctions between the two surfaces. This is true for the transfer entropies
computed between any mass responses, although only one set is pictured for simplicity. Slices can be taken of
the transfer entropy surface to form planes of transfer entropy in any number of directions. For the purposes
of this work, the plane at t1 ¼ �1 is examined for five of the baseline runs (Fig. 4), as this corresponds to the
transfer entropy employed in previous literature [10,11] and is described in Eq. (2). Additionally, a slice was
taken along the diagonal t1 ¼ t2 ¼ t (Fig. 5). The estimated transfer entropy is very close to the theoretical
transfer entropy along both of these sets of planes. However, the variance within the estimated transfer
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Fig. 5. Analytical and estimated transfer entropy planes ( estimated; theory), Ty!xðt1 ¼ t2 ¼ tÞ for

(a) Tx1!x2
ðt1 ¼ t2 ¼ tÞ, (b) Tx2!x3

ðt1 ¼ t2 ¼ tÞ, (c) Tx3!x4
ðt1 ¼ t2 ¼ tÞ, (d) Tx2!x1

ðt1 ¼ t2 ¼ tÞ, (e) Tx3!x2
ðt1 ¼ t2 ¼ tÞ, and

(f) Tx4!x3
ðt1 ¼ t2 ¼ tÞ.

L.A. Overbey, M.D. Todd / Journal of Sound and Vibration 322 (2009) 438–453444
entropy along the t1 ¼ t2 ¼ t diagonal is slightly smaller than that along the t1 ¼ �1 plane. For, the t1 ¼ �1
plane, the minima are near t1E7100 as outlined previously for the entire transfer entropy surface. There are
peaks in the transfer entropy at short lags because the cross-correlation between x(n) and y(n7t2) is high when
t2 is small. However, the transfer entropy is zero at t2 ¼ �2 because x(n�1) and y(n�2) are highly redundant
at these delays.

Along the t1 ¼ t2 ¼ t diagonal, the structure over the lags is very different. The maxima and minima are
still inherently related to the auto- and cross-correlation functions, but they have a much more variable
structure from one comparison to another. The larger transfer entropies are at negative delays because each
mass has a greater influence on the future dynamics of adjacent masses, as would be expected for this type of
structural filter. The excitation is closer to the free end, so the peak information flow from xi+1-xi is greater
than the information flow from xi-xi+1. The directionality of information transfer can also be noticed in the
location of the peak along the delay axis. The peak in transfer entropy from xi+1-xi is at a higher negative lag
than the reverse. Also, the peak is closer to the positive delays at comparisons closer to the excitation.
4. Damage identification: simulated model

As the field of structural health monitoring (SHM) has emerged, the use of system identification procedures
to perform change detection [15–18] has garnered interest in the research community. Structural health
monitoring involves the process of measuring and analyzing dynamic responses to structures to identify
whether damage is present, as evidenced by changes in the dynamics [19]. The ability of transfer entropy to
identify these types of changes will be evaluated and compared to other common change detection algorithms.
To simulate a system change in the computational model, a linear stiffness reduction was introduced into each
of the five originally equivalent springs ki individually by 1, 5, 10, 25, and 50 percent for each respective
damage case. Fifteen runs were simulated for the baseline condition, and five runs for each damaged
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condition. The undamped natural frequencies are displayed in Fig. 6. Note that, other than for four or the 25
scenarios at 25 percent damage, the natural frequencies do not change more than 5 percent until there is a 50
percent reduction in spring stiffness.

Given linear transfer entropies estimated from the various damage cases, one can construct a damage index
as in [11]. From the first ten runs at the baseline (undamaged) state, the baseline mean m0 and standard
deviation s0 at each time scale can be estimated. The metric x for some unknown system condition is defined as

xy!xðt1; t2Þ ¼
Ty!xðt1; t2Þ � m0ðt1; t2Þ

s0ðt1; t2Þ
. (10)
Fig. 6. Undamped resonant frequencies for each damaged spring where damage spring k1, damage spring k2,

damage spring k3, damage spring k4, and damage spring k5.

Fig. 7. xx2!x1
ðt1; t2Þ for the transfer entropy surface with 1 percent stiffness reduction in spring k2.

Fig. 8. xx2!x1
ðt1; t2Þ for the transfer entropy surface with (a) 5 percent stiffness reduction in spring k2, (b) 10 percent stiffness reduction in

spring k2, and (c) 50 percent stiffness reduction in spring k2.
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By establishing a suitable threshold for significance, the hypothesis that the system is undamaged can be tested
for any set of delays in the transfer entropy surface. To reduce dimensionality of the damage index, the
average normalized metric may also be formed: xy!x ¼ 1=4t1t2

Pt1
�t1

Pt2
�t2xy!xðt1; t2Þ.

Figs. 7 and 8 show damage index surfaces xy!xðt1; t2Þ for varying degrees of damage introduced at spring
k2. It is immediately evident that the plane along the t1 ¼ t2 ¼ t diagonal sees the largest increase in the
damage index at the location of damage (i.e., the transfer entropy between responses on either side of the
damaged spring). The sensitivity of transfer entropy along the diagonal is not unexpected because this plane
does not have the false auto-transfer entropy increase brought about by the first-order Markov series
assumption, as explained previously. Therefore, it may be computationally more efficient to compute the mean
damage index only for delays along this diagonal, i.e., xy!x ¼ ð1=2tÞ

Pt
�txy!xðt; tÞ.

As further evidence, Fig. 9 compares the diagonal-lags transfer entropy to several similar two-dimensional
system identification measures for increasing damage at spring k3. Decreasing stiffness values in spring k3 are
indicated by progressively lighter line shades, with five runs per stiffness level. Each row represents a different
measure. The first row is the cross-correlation, the second row is the mutual information, third row is the
transfer entropy along the t1 ¼ �1 plane, and the fourth row is the transfer entropy along the diagonal of the
transfer entropy surface. Each column represents a different location, where the measures were taken between
adjacent masses around one specific spring (column 1 around k2, column 2 around k3, and column 3 around k4).

The cross-correlation measurements at all three locations are nearly identical, despite differing stiffness
levels, until the natural frequencies have changed significantly enough to shift the locations of maxima and
minima. Another information-based feature, the time-delayed mutual information [13], shows very little
change as the linear stiffness is reduced in the spring. However, there is a slightly noticeable change in the peak
at t ¼ 0 at the location of damage (between responses x3 and x2). Similarly, transfer entropy along the t1 ¼ �1
plane [10,11] shows a gradual difference at its peaks, however the variability in consecutive runs has increased.
The last row shows the transfer entropy along the diagonal of the two-delay surface. Changes to the transfer
entropy for as low as 1 percent stiffness change can be seen here, and dramatic changes are visible as the
stiffness is further reduced. Note that the location of damage is immediately evident as well, as the structure of
the information transfer has changed most across the responses on either side of the damaged spring. This
plane of transfer entropy largely decreases for negative delays because the loss in stiffness has reduced the
forward-in-time flow of information across the loosened spring.

The mean damage indices of these four two-dimensional measures (where T in Eq. (10) is replaced with the
appropriate feature) plus the entire transfer entropy surface are shown in Fig. 10. Damage is introduced here
in spring k4. As in Fig. 9, increasing damage is indicated by progressively lighter shades of bars. Each location
is represented by each grouping of bars along the x-axis. The value of the damage index of each measure is
represented by the height of the bars. The results for each measure are displayed individually in each of the
subplots (a) through (i), where (a) is the cross-correlation, (b) is the mutual information, (c) is the transfer
entropy averaged over the entire transfer entropy surface, (d) is the transfer entropy averaged over the t1 ¼ �1
plane, and (e) is the transfer entropy along the diagonal plane t1 ¼ t2 ¼ t.

Although the plots in Fig. 9(a)–(e) show very little differences between damage, the mean damage indices
are able to extract the slight shift in natural frequencies noticeable at 25 and 50 percent stiffness loss in the
spring for all but the mutual information. The results from the cross-correlation, entire transfer entropy
surface, and transfer entropy along the t1 ¼ �1 plane are fairly similar in quality. However, the damage index
from the diagonal of the transfer entropy surface (Fig. 10(e)) is radically larger at the location of damage.
Thus, the structural change is evident earlier, and the location of this change is immediately obvious using this
feature.

These results can be further compared to common modal structural identification techniques. Fig. 11
displays results from mean damage indices composed similarly to Eq. (10) for several of these modal
algorithms. Fig. 11(a) shows the mean damage index xH where xHðf Þ ¼ ðHðf Þ � m0ðf ÞÞ=s0ðf Þ, H(f) is the
frequency response functions of each mass response, and the mean is summed over all frequencies from 0 to
200Hz. Additionally, Fig. 11(b) is the damage index xf i

¼ ðf i � m0Þ=s0 where fi is the frequency value of each
identifiable modal frequency. Note that, in the frequency response, only two of the five modal frequencies were
identifiable in the simulated structure. Finally, Fig. 11(c) reveals the mean damage index xui

, where
xuiðnÞ ¼ ðuiðnÞ � m0ðnÞÞ=s0ðnÞ, ui(n) is the mode shape of each identifiable mode, and the mean is summed over
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Fig. 9. Feature results for five runs at each damage condition ( 0, 1, 5, 10, 25, and

50 percent damage at location k3) where (a) R̂x2x1
ðtÞ, (b) R̂x3x2

ðtÞ, (c) R̂x4x3
ðtÞ, (d) Ix2x1

ðtÞ, (e) Ix3x2
ðtÞ, (f) Ix4x3

ðtÞ, (g) Tx2!x1
ðt1 ¼ �1; t2Þ,

(h) Tx3!x2
ðt1 ¼ �1; t2Þ, (i) Tx4!x3

ðt1 ¼ �1; t2Þ, (j) Tx2!x1
ðt1 ¼ t2 ¼ tÞ, (k) Tx3!x2

ðt1 ¼ t2 ¼ tÞ, and (l) Tx4!x3
ðt1 ¼ t2 ¼ tÞ.
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Fig. 10. Damage index x for five runs at each damage case ( 0, 1, 5, 10, 25, and 50

percent damage at location k4), where (a) xR̂yxðtÞ
, (b) xIyxðtÞ, (c) xTy!xðt1 ;t2Þ, (d) xTy!xðt1¼�1;t2Þ, and (e) xTy!xðt1¼t2¼tÞ. The dotted lines represent

the 95 (lower line) and 99 percent (higher line) confidence levels assuming a Gaussian response.

Fig. 11. Damage index x for five runs at each damage case ( 0, 1, 5, 10, 25, and 50

percent damage at location k4), where (a) xH , (b) xf i
, and (c) xui

. The dotted lines represent the 95 (lower line) and 99 percent (higher line)

confidence levels assuming a Gaussian response.
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all nodes from x1 to x5. The modal frequencies and mode shapes were determined using the frequency-based
rational polynomial curve fitting algorithm [1] and the software found in [20]. Examining direct changes to the
frequency response functions, one is not able to predict the onset of structural changes at all within the range
of damage simulated. The first modal frequency and mode shape is able to identify a 50 percent stiffness
change in the fourth spring, but this metric is not as sensitive as most of the time-based measures from Fig. 10.
For this computational example, the modified transfer entropy introduced in this work is much more sensitive
to the simulated changes than any of the other techniques compared.

Assuming the response in each run is Gaussian, and the system is nominally linear, the damage index can be
compared to a confidence limit based on a standard normal distribution. The thresholds, S ¼ 1.96 and 2.5758
for 95 and 99 percent confidence are shown as dashed lines in Figs. 10 and 11. To incorporate the confidence
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Fig. 12. Damage index ZH for five runs at each damage case (damage in fourth spring, k4); (a) x3, (b) x4, and (c) x5.

Fig. 13. Damage index Z for five runs at each damage case (damage in fourth spring, k4), where Zf i
and Zui

; (a) mode

number 1 and (b) mode number 2.

Fig. 14. Damage index Z for five runs at each damage case (damage in fourth spring, k4) where ZR̂yxðtÞ
, ZIyxðtÞ,

ZTy!xðt1 ;t2Þ, ZTy!xðt1¼�1;t2Þ, and damage ZTy!xðt1¼t2¼tÞ; (a) x3-x2, (b) x4-x3, and (c) x5-x4.
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level, a final damage index Z can be introduced such that non-zero values appear only above the set threshold:

Z ¼ ðx� SÞYðx� SÞ, (11)

where Y is the unit step function. Thus, a positive Z indicates that the hypothesis the system is undamaged is
rejected with some confidence. The Z results for the spring k4 damage scenario are shown for each of the
compared features in Figs. 12–14. As evident in the formerly displayed bar chart results, the transfer entropy
along the diagonal of the two-lag surface is most sensitive to any changes in stiffness in the spring. At response
locations other than the location of damage, this modification of the transfer entropy is able to capture
differences caused by damage as well or better than each of the other features considered. At the specific
location of damage, the modified transfer entropy is quite superior, with as much as eight times higher values
in its damage index Z.



ARTICLE IN PRESS

Fig. 16. Damage index x for four runs per scenario ( undamaged, 14 percent damage at fifth spring), where (a) xH , (b)

xf i
, and (c) xui

. The dotted lines represent the 95 percent (lower line) and 99 percent (higher line) confidence levels assuming a Gaussian

response.

Fig. 15. Experimental setup.
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5. Damage identification: experimental structure

To further corroborate the results evidenced in the simulated oscillator, an experimental multi-degrees-of-freedom
oscillator was analyzed (Fig. 15). The experimental setup and data collection was performed at the Los Alamos
National Laboratory, Engineering Institute for Structural Health Monitoring, Damage Prognosis, and Validated
Simulations, the data of which can be obtained from their website (http://www.lanl.gov/projects/ei/). The system is
assembled from eight translating masses connected by springs. Each mass is a 25.4mm thick, 76.2mm diameter
aluminum disc. A highly-polished steel rod slides through a hole in the center of each disc to support the masses
vertically while constraining them to horizontal motion only. The mass holes are lined with a Teflon bushing and
affixed to small steel collars with bolts. The springs between each mass are epoxied to the steel collars.

A Hewlett-Packard 3566A data acquisition system was used, consisting of a 35650 mainframe, 35653A
source module, four 35653A 8-channel input modules, and a 35651C signal processing module. A PCB type
204 force transducer is present at the connection to the 215-N peak force electro-dynamic shaker. An Endevco
type 2251A-10 accelerometer is bonded to each mass element. The masses are labeled sequentially with the first
located at the end attached to the shaker. Each degree of freedom has a mass of 419.4 g except for the first,
which has a mass of 559.3 g because of the hardware needed to attach the shaker.

The undamaged condition consists of identical springs with a linear spring constant of 56.7 kN/m. For the
damaged condition, the fifth spring counting from the shaker end was replaced by a spring with a linear spring
constant of 49.0 kN/m (a 14 percent reduction in stiffness). Four runs at 3, 4, 5, and 6V, respectively were
applied for both the undamaged and damaged conditions. Data was sampled at 500Hz for 8 s for each run.
All damage indices were computed as in Eqs. (10) and (11).

http://www.lanl.gov/projects/ei/
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Fig. 17. Damage index x for four runs per scenario ( undamaged, 14 percent damage at fifth spring) where (a) xR̂yxðtÞ
,

(b) xIyxðtÞ, (c) xTy!xðt1 ;t2Þ, (d) xTy!xðt1¼�1;t2Þ, and (e) xTy!xðt1¼t2¼tÞ. The dotted lines represent the 95 percent (lower line) and 99 percent (higher

line) confidence levels assuming a Gaussian response.

Fig. 18. Damage Index Z for the experimental oscillator for (a) undamaged; rxy(t), (b) undamaged; Ixy(t), (c) undamaged;

Ty!xðt1 ¼ �1; t2Þ, (d) undamaged; Ty!xðt1 ¼ t2 ¼ tÞ, (e) undamaged; Ty!xðt1; t2Þ, (f) 14 percent damage in fifth spring; rxy(t), (g) 14
percent damage in fifth spring; Ixy(t), (h) 14 percent damage in fifth spring; Ty!xðt1; t2Þ, (i) 14 percent damage in 5th

spring;Ty!xðt1 ¼ �1; t2Þ, and (j) 14 percent damage in fifth spring; Ty!xðt1 ¼ t2 ¼ tÞ.
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Damage index x results from each system identification technique can be viewed in Figs. 16 and 17. The
frequency response functions are properly able to characterize the presence of a linear system change. Seven
modes were identifiable from the frequency response functions. Four of these modes showed significant changes
to their peak frequencies, while six mode shapes conveyed such differences. From the time-domain based
measures (Fig. 17), only the mutual information is unable to see the structural stiffness change at each of the
response comparisons. The transfer entropy-based damage indices show more drastic increases to the damage
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index than the cross-correlation. The modified transfer entropy surface and diagonal damage indices have
slightly higher values than the previously employed transfer entropy along the t1 ¼ �1 plane. Also, only the
cross-correlation and transfer entropy along the diagonal have maximum damage indices at the correct location
of damage. For each of the time-domain based measures, the damage index Z is plotted for each of the possible
response comparisons for one representative run (Fig. 18). It is evident that the modified transfer entropy surface
and transfer entropy plane along the diagonal are both more sensitive and better able to locate damage.

Although transfer entropy appears to be equal to if not superior to all other system identification techniques
compared, the dramatic differences in location-specific sensitivity in the modified diagonal transfer entropy are
less obvious in this experiment than in the simulated model. The decreased sensitivity in the experimental
results is most likely attributable to changes in boundary conditions between the undamaged and damaged
results. In order to change the stiffness in the interior spring as required for the damage condition in this
experiment, connections between elements in the structure must be taken apart and reattached. Consequently,
a more global boundary condition change is noticeable in the responses. The more locally dependent modified
transfer entropy along the diagonal is able to detect the change as well as or better than the other metrics,
similar to the computational model at comparisons at other damage locations (Figs. 14(a) and (c)). However,
the local differences in information exchange are not much more noticeable at the comparisons at the specific
location of damage itself, as was the case in the computational model. A different experiment that allows the
practitioner to change the stiffness linearly at one location without requiring these boundary condition
changes between elements in the structure may be better suited for seeing the expected dramatic local changes
in the modified transfer entropy along the diagonal time delays.

6. Summary and discussion

An expansion of the transfer entropy was developed that incorporates two time delays to form a transfer
entropy surface. This modification examines additional time scales of the information flow not present in
previously proposed applications of transfer entropy for system identification. The entire surface or some
subset of the surface can be analyzed. Previous literature utilizing the transfer entropy used a time delay such
that lags in only one of the processes under consideration were examined. The use of two lags allows for
additional interpretations of the influences between various processes at further time scales without the
computational burden and variability introduced through higher order Markov models. Theoretical values for
this transfer entropy surface were derived and compared favorably to estimated values assuming a linear
structural dynamics model. From a structural damage detection perspective, using the diagonal set of time lags
from this newly introduced transfer entropy surface provides greater sensitivity to damage, as well as a
capability for damage localization not previously attainable with other forms of the transfer entropy.

Specifically, the transfer entropy was examined in its ability to determine the onset of linear stiffness changes
to computational and experimental multi-degrees-of-freedom oscillators subject to random Gaussian excitation.
Damage indices formed from the transfer entropy surface were compared with several other common system
identification techniques, including cross-correlations, frequency response functions, modal frequencies, mode
shapes, and mutual information. For the provided examples, the diagonal of the transfer entropy surface was
validated to have as good or better sensitivity to structural changes than all other metrics compared. The
modified transfer entropy along the diagonal is superior in its ability to locate damage in the structure as well.

Interestingly, the estimation of transfer entropy (assuming a linear model) is actually made using auto- and
cross-correlations, yet the sensitivity to damage and damage location for certain time lags in the transfer
entropy is much higher than the auto- or cross-correlation alone. The transfer entropy is a complicated
nonlinear function of several auto- and cross-correlations, and this particular combination results in much
greater changes in the presence of damage. Specific components of various auto- and cross-correlations are
emphasized or de-emphasized by the expression such that damage-specific (stiffness) changes to the system are
more noticeable at the location of damage. Transfer entropy in this work is formulated in such a way as to
describe the (possibly bi-directional) flow of information between locations on a structure, while still being
grounded in a functional relationship with more widely understood concepts such as auto- and cross-
correlations. This formulation and relationship results in a measure more locally sensitive to damage than
other common linear system identification measures.
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Each technique was constructed based on a model assuming Gaussian forcing and no higher than second-
order correlations in the data. If one were interested in model-unspecific or nonlinear system changes, then the
transfer entropy features can still be utilized if probabilities in the transfer entropy expression are estimated
directly rather than under the linear model assumption. These estimations can be difficult, and therefore, if the
linear assumption can be made, the technique introduced in this work is advisable. However, many forms of
structural damage can manifest as the presence of nonlinearity, e.g., opening and closing of a crack or loss in
preload in a bolted connection. Future work will attempt to perform a complete estimation of the modified
transfer entropy introduced here for the purposes of generalized system change identification and nonlinearity
detection, possibly using tailored surrogates.
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